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Introduction

The school is devoted to an introduction to rigorous RG methods.

The basic mathematical objects are Euclidean correlations ( regularized functional
integrals)

S(x1, .., xn) =

∫
P(dΦ)e−V (Φ)Φx1 ...Φxn∫

P(dΦ)e−V (Φ)

where x are points in a suitable finite lattice Λ with step a and side L. Averaging over
all the field configurations with weight P(dΦ)e−V (Φ).
One has also to consider two cases which can be called bosonic or fermionìc.
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Functional integrals

In the bosonic case (Φ = φ) φx ∈ R, P(dφ) is a Gaussian measure
(
∏

x dφxe−1/2(φ,Aφ))) and V (φ) is a sum over monomials in φ; in the φ4 model
V =

∑
x
λ
4!φ

4
x (λ is the coupling). Finite dimensional but O((L/a)d) variables (in the

one dimensional case ∼
∫∞
−∞ dxe−x2−λx4)

In the fermionic case (Φ = ψ) then ψx , ψ̄x are Grassmann variables, (
anticommutative {ψx , ψy} = 0 ) P(dψ) is a Gaussian Grassmann integration and V is
a sum over monomials in the Grassmann variables. V quartic, Fermi model
(Tentativo). Finite dimensional but O((L/a)d) variables.

∫
dψψ = 1 and zero

otherwise.
∫

dψ4dψ3dψ2dψ1eλψ1ψ2ψ3ψ4 = λ. [See Gallone lecture]
The problem is to compute the |Λ| → ∞ limit (infrared problem) or the a → 0 limit
(ultraviolet limit) ; or both
We will focus on the Grassmann integrals.
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Applications

The above objects are central in modern physics in all kinds of phenomena in which
the interaction between particles produces modifications with respect to the non
intercting behavior. In particular

In condensed matter conduction electrons in metals are a gas of interacting fermions;
interaction can produce dramatic effects like superconductvity, luttinger liquid
behavior etc. The equilibrium correlations and transport coefficients can be written
as grassmann integrals (Matsubara) Λ is the space- (imaginary) time, side β and L.
One is interested in L → ∞ (thermodynamic limit) and zero temperature β → ∞)
(see Porta lecture) (x1 discrete and x0 continuous).
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Applications

Also classical statistical mechanics models, like the 2D Ising model and its
perturbations, or dimers, vertex models and so on can be written in terms of
Grassmann integrals. There Λ is the physical lattice, and the deviation from the
critical temperature is the mass of fermions (see Gallone lecture).

Models in Euclidean QFT, like QED, Standard Model etc regularized on a lattice are
expressed functional integrals. Feynman integral e

−iS
~ with Wick rotation. Purely

fermionic ones are the fermi theory of weak interactions, the Thirring model and
several others (fermions are particles and bosons the fields).
The construction of a QFT consist in proving that one cam take the limit
L → ∞, a → 0 and verify Osterwalder-Schrader and then Wightmann axioms. If a
fxed one construct an effective QFT.
The theory of such functional ntegrals has been originated by some many different
physical domanis and the language to describe the property feels such variety.
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Dressed and bare quantities

One can try to adopt a perturbative method expanding eV ; this however typically
fails in the thermodynamic limit or at criticality. In QFT (in the continuum) there is
also a basic problem connected to the fact that the integrals are diverging at short
distances (ultraviolet problem)

The interaction can produce a radically different physical behavior (how we can
recostruct perturbatively?) For instance in condensed matter you can have Luttinger
behaviour (the occupation number is not discpntinuous but continuous) or
superconductivity
Even in the more normal cases (like Fermi liquid) the parameters are always modified
or dressed (the Fermi momentum the mass in QFT, the critical temperature in stat
phys), so expansion in λ does not work. In QFT the bare quantities diverge with the
uv cut-off.
In pert theory 1

k2+(m2+λ2)
appears as 1

k2+m2
∑∞

n=0(−1)n( λ2

k2+m2 )
n
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Universality

Somewhat paradoxically, some quantity is instead completely independent from
interaction and microscopic detail

This is known from experiments. Experiments show that the exponents are the
exactly same in a wide class of system and often coincide with Ising; for instance in
d = 2 the index β at the ferromagnetic transition is 0.119(8) in Rb2CoF4, 0.123(8) in
K2CoF4, 0.135(3) in Ba2FeF6. (β = 1/8 in Ising); in d = 3 ν = 0.60.7 and best
numerical results ν = 0, 6299...
In condensed matter the Hall conductivity

σ = ne2/h

with n integer,
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Universality

The optical conductivity of graphene Experiments (Geim Nosovelov..(2008) show no
interaction corrections

The Fermi velocity is drastically renormalized instead
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Universality

The exponents can be modified and be non universal but can veify relations allowing
th express them exactly in terms of a single one .marginal universality.

In Luttinger liquids (Haldane 1980)

D = vsK/π η = (K+1/K−2)/2 ν = 2/(1−1/K) X+ = 1/X− = K , κ = K/(πvs)

Verified in solvable models like Luttinger or XXZ; even the slightest modification
destroy solvabililty
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Renormalization

First analysis of functional integrals in QED lead to ultraviolet divergences; integrals
are infinite

renormalization, ∼ 1948 (Bethe, Schwinger, Feynman, Tomonaga, Dyson,..).
Observable P as series in the (bare) charge eb; P(eb) = P0 + P1eb + P2e2

b + .... with
Pi = ∞ infinite!
One introduces a regularization Λ, P(eb,Λ) = P0(Λ) + P1(Λ)eb + ....; Among the P
one can identify the dressed charge, which is the measured one ed(eb,Λ); formally
inverting eb = eb(Λ, ed) we get P(eb(Λ, ed),Λ) = P̃0(Λ) + P̃1(Λ)ed + P̃2(Λ)e2

d + ....

In QED or in the SM then limΛ→∞ P̃i(Λ) <∞ finite!; of course one needs to face
convergence (typically not convergent, triviality and all that)
The Renormalization Group is the modern way of implementing renormalziation.
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Renormalization Group

Renormalization Group was introduced by Wilson (1975) was introduced. Crucial
notion of scaling, dimension and relevant or irrelevant terms. It was a revolution
making quantitative the concept of emergence of a certain behavior at a certain
length scale to others.

Essentially the propagator or covariance ĝΦ(k) is written as sum of propagators∑N
h=−∞ ĝh

Φ(k) each non vanishing for cγh−1 ≤ |k| ≤ cγh+1 for h ≤ N − 1, γ > 1
By addition property of Gaussian integrals∫

P(dΦ)e−V (Φ) =

∫
P(dΦ<N )

∫
P(dΦN )e−V (Φ<N+ΦN )) =

∫
P(dΦ<N )e−V N (Φ<N )

where P(dΦ<N ) has propagator
∑N−1

h=−∞ ĝh
Φ(k), P(dΦN ) has propagator ĝN

Φ (k) and
V N is sum of monomials of any order in φ<N integrated over certain kernels.
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Renormalization Group

The procedure can be iterated obtaining V h. During such procedure some of the
terms in V h tend to increase and others to decrease.

Supposes that the propagator is ĝ(k) = χ/|k|α; then

g≤h
Φ (x) ∼ γ(h−N)(d−α)g≤N

Φ (γ(h−N)x)

The field with cut-off at scale h Φ≤h(x) is essentially distributed as γ(h−N)(d−α)/2

Φ≤N (γ(h−N)x).
The monomials appearing in V h of the form

∫
dxO≤h

n , a local monomial with n fields,
behaves essentially as O≤N

n with a prefactor

γ−(h−N)Dn

∫
dxO≤N

n Dn = d − (d − α)

2
n
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Renormalization Group

Therefore after the integration of the field at scales N ,N − 1, .., h one obtains an
expression similar to the initial one but where each monomial in the potential is
multiplied by a factor γ−(h−N)Dn .

The terms with Dn > 0 are increased integrating the fields from scale N to scale h;
they are called relevant (superrenormalizable). The terms Dn < 0 are decreased and
are called irrelevant (non renormalizable). The terms with Dn = 0 are unchanged by
this scaling argument and are called marginal (renormalizable).
When the interaction is irrelevant than it decreases iterating the RG; this essentially
says that the large distance behavior (infared behavior) is unchanged; if relevant it
increases and the behavior can be drastically changed. There are however cases in
which the increasing is prevented by cancellations.
In condensed matter typically N = 0 fixed. In QFT one wants to take N → ∞; when
irrelevant one needs a bare value larger and larger to be O(1) at scale 0 (so outside
perturbative accessible regime); when relevant the opposite
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Wilsonian Renormalization Group

When the interaction is marginal (renormalizable), the behavior is given by an
equation called Beta function which has typically the form
λh−1 = λh + ahλ

2
h + bhλ

3
h + ..., the rrcc λh the effective coupling.

If (roughly speaking) ah < 0 then λh decrease; the i.r. behavior is the same as of the
free theory (in uv increases) . If ah > 0 it increases (maybe non trivial fixed point).;
in the uv trivial fixed point. Marginally relevant or irrelevant can be decided on the
basis on a second order analysis.
Most rigorous results regard the case of irrelevant or marginally irrelevant for the ir
(or relevant or marginally relevant for the uv). In the relevant or marginally relevant
one expects ”a non trivial fixed point”.
In the marginally marginal case all coefficients are vanishing. This cannot be proved
by perturbative computation and correspond to a line of fixed points. Lines of fixed
points, different physical behavior.
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Rigorous fermionic RG

In most physical applications a)the irrelevant terms are neglected; b)higher orders are
neglected and series are not convergent. In QFT (in the continuum) there are a basic
problem connected to the fact that the integrals are diverging at short distances
(ultraviolet problem)

In condensed matter or statistical physics (part of) space time is discrete but there
are problems connected to large distance behavior.
Physical information are extracted by certain ”tricks” like ”forbidden resummations”
(self energy, like 1 − 1 + 1 − 1... = 1/2) or truncations.
The situation is remarkably similar to the debate on Newton mathematics in XVIII
(eg Berkeley Maclaurin,..) on diverging series, fluxions, division by zero....
Berkeley;”By a double error you arrived if not to science to the truth”compare with
Feynman: ”I suspect that renormalization is not mathematically legitimate.”
Starting from the 80’s rigorous renormalization was introduced.
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Rigorous fermionic RG

In a rigorous context by ”perturbative results” one means that one gets series finite
removing the cut-off, in particular obtaining n! bounds. Non-perturbative that the
functional integrals are controlled removing some of the cut-off.

The series for bosons around zero cannot be convergent in contrast to to the one for
fermions, ∼

∫∞
−∞ dxe−x2−λx4 versus

∫
dψ4dψ3dψ2dψ1eλψ1ψ2ψ3ψ4 = λ. The n! are there

for bosons but not for fermions.
Fermion series are convergent (good); however bosons have also advantages as can use
saddle point arguments (one can decide to write fermions as boson by Hubbard
Strataniwich or integrate the bosons considering only fermions).
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Rigorous fermionic RG: QFT

Gallavotti introduced a rigorous version of RG and the tree expansion (see review
RMP 1986) obtaining n! bounds.

Gawedzki, Kupiainen (CMP 1986) constructed non-perturbatively the massive GN2
model D = 2 − n/2 in the ultraviolet, which is renormalizable (among first examples)
and marginally relevant (trivial uv fixed point); Lesniewski (CMP 1987) constructed
the Yukawa2 model which is superrenormalizable using Brydges formula (Brydges.
Les Houches, 1980 and Gram bounds (Caianiello 1956) .
The uv GN2 was also constructed by Feldman, Magnen, Rivasseau, Sénéor (CMP
1986) and the massless infrared in the large N limit with mass generation by Kopper,
Magnen, Rivasseau (1995) (intermediate regime missing!).
Not so many other examples of QFT construction and OS axioms (Thirring model
d = 2, Benfatto Falco Mastropietro 2006); in d = 4 effective QFT point of view (a
small but finite), triviality of φ4 (Aizenman Duminil-Copin Ann of Math 2020) makes
SM probably effective by Higgs; possible QFT for strong sector.
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Rigorous fermionic RG: application to condensed matter

In the ’90 rigorous RG was applied to condensed matter by Benfatto, Gallavotti (JSP
90) and Feldman, Trubowitz (HPA 90); interacting non relativistic fermions in the
continuum. Extended singularity in d ≥ 2; D = 2 − n/2, the theory is marginal and
in d ≥ 2 the rcc is function of the angles. In certain directions is marginally relevant
(superconductivity). order by order perturbative analysis.

There was an attempt to construct non perturbatively the T = 0 properties in the
continuum at d = 2 and proving superconductivity, using also sectors method
(Feldman, Magnen, Rivasseau, Trubowitz EPL 1993); several interesting partial
results but problem still (very!) open. Difficulty related to marginal relevance and
infinitely many couplings.
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Rigorous fermionic RG: application to condensed matter

RG and sectors were used to construct the T = 0 properties in d = 2 of a special
lattice model with asymmetric Fermi surface (asymmetry makes rcc effectively
irrelevant) (Knoerrer Feldman Trubowitz CMP 2002), Fermi liquid behavior
(regularity of counterterm proved order by order Feldman Trubowitz Salmhofer
CPAA 1999)

Temperature stops RG flow. RG and sectors used only to construct for T above
exponentially small temperature Jellium continuum model (Disertori Rivasseau CMP
2000); then in the Hubbard model (Benfatto Giuliani Mastropietro AHP 2005)
(temperature stops flow); proved regularity of counterterms.
Going to lower temperatures is very hard; one can truncate the beta function and see
numerically which kind of coupling increases more, see eg Honerkamp Salmhofer
(PRB 2002), getting evidence for superconductivity for d = 2 attractive Hubbard
(connected to the debated problem of high Tc supercondictivity)
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Rigorous fermionic RG: application to condensed matter

Actually the only cases in which the T = 0 properties of condensed matter model
have been constructed are when the FS is pointlike; d = 1 (Luttinger liquids) and in
d ≥ 2 (graphene, weyl semimetals, Hall systems....); point like Fermi surface.

In the first case D = 2 − n/2 only 1 rcc; anomalous exponents, marginally marginal
theory main difficulty vanishing of beta function.
In the second D = 3 − n or D = 4 − 3n/2; coupling irrelevant main difficulty proving
universality of transport coefficients.
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Rigorous fermionic RG: Luttinger liquids, vanishing of
beta function ad all that

In d = 1 case the first proof of vanishing of beta function was given (Benfatto
Gallavotti Mastropietro, PRB 1992, Benfatto Gallavotti Procacci Scoppola CMP
1994) using the exact solution of the Luttinger model by bosonization (Mattis Lieb
1966).

This was not (fully) satisfactory as would like to have a self-consistent proof avoiding
”exact solutions” which are special (if even in d = 1 RG is not enough alone, no hope
for future!).
Later Benfatto Mastropietro (CMP 2002, CMP 2004) developed a nechnique allowing
to implement WI in each RG step; control of corrections due cut-off. This allowed the
direct proof of vanishing of beta function. Subsequently a better choice of the
”reference model” allowed to prove a version of the Adler-Bardeen theorem
(Mastropietro JMP 2006) for chiral anomalies.
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Rigorous fermionic RG: Luttinger liquids, vanishing of
beta function ad all that

Such methods allowed to rigously prove the Luttinger liquid relations proposed by
Haldane (1980) in non solvable models (they were checked before only in solvable
ones) (Benfatto Falco Mastropietro CMP 2008, PRL 2008); later this method was
applied to interacting dimers (Giuliani Mastropietro Toninelli 2019) (also Pinson
Spencer 2008) extending relations in the free case (Kenion Okunkov Sheffield
Ann.Math 2002). Regularity+WI

The method also allowed to prove the axioms in Thirring and the Coleman
equivalence (Benfatto Falco Mastropietro CMP 2007), extended recently (only in the
free fermion point) (Bauerschmidt, Webb Eur. Math. Soc 2024)
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Rigorous RG: Graphene, Hall insulators, quasi-periodic
disorder

In the case of graphene the FS is point like, and the interaction do not change the
asymptotic behavior at T = 0 (Giuliani Mastropietro CMP 2008) .

The main difficulty is to compute the trasnport coefficients; physical computaions
(Mischenko 2009) showed a strong renormalization, in contrast with experiments. In
Giuliani Mastropietro Porta CMP 2010 a theorem was proved establishing the exact
universality. Cancellation of irrelevant terms.
Hubbard interaction; for long range still open! (order by order lines of fixed points)
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Rigorous RG: Graphene, Hall insulators, quasi-periodic
disorder

The universality of Hall conductance in presence of interaction was proved in Giuliani
Porta Mastropietro CMP 2016 (see also Hasting Mikalakis CMP 2015 by topological
methods).

Chiral Luttinger liquid behavior (see Wen, Froehlich,..) at the edges of Hall
insulators and quantization in presence of interaction was proved in Antinucci
Mastropetro Porta CMP 2022.
The presence of quasi periodic disorder (one particle Avila Jatomirskaja AoM 2008)
inf 1d interacting fermions (Benfatto Gentile Mastropietro, JSP 1997 Mastropietro
CMP 1998) was considered in the gapped case, using ideas from KAM Lindstedt
series.
In a gapless case (and no second Melnikov) in the 2D Ising model with quasi periodic
disorder (Gallone Mastropietro CMP 2024) the Harris irrelevance conjectured by
Luck JSP 1983 was proved.
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Courses

Proof of universality of the optical conductivity in graphene (Porta)

Proof of Harris-Luck criterion on quasi periodic Ising (Gallone)
Proof of Luttinger liquid construction (Mastropietro)
Conclusion and open problems
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General introduction to the methods

Benfatto,Gallavotti; Renormalization Group, Princeton Press (1996)
Gentile, Mastropietro, Phys Rep 2001
V. Mastropietro Non perturbative renormalization , World Scientific 2008

See also for very related methods
V. Rivasseau From perturbative to non perturbative renormalization, Princ Press
1991;
M. Salmhofer Renormalization Springer 1999;
R Bauerschmidt, DC Brydges, G Slade Introduction to a renormalisation group
method Springer 2019;
Giuliani, Mastropietro, Ryckov, Gentle introduction JHEP 2022
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